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Redux

• Redux makes complex UI manageable 
• Origin: React Ecosystem

• Implementation used here: @ngrx/store
• Alternative: @ngxs/store
• Or: @dataroma/akita

ng add @ngrx/store



Alternatives
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State



State
export interface FlightBookingState {
  flights: Flight[];
  statistics: FlightStatistics;
  basket: object;
}



State
export interface FlightBookingState {
  flights: Flight[];
  statistics: FlightStatistics;
}

export interface FlightStatistics {
  countDelayed: number;
  countInTime: number;
}



AppState
export interface AppState {
  flightBooking: FlightBookingState;
  currentUser: UserState;
}



Actions



Actions

• Actions express events that happen throughout your application 

• dispatch(flightsLoaded({ flights }))



Parts of an Action

Type
Payload



Defining an Action
export const flightsLoaded = createAction(
    '[FlightBooking] FlightsLoaded',
    props<{flights: Flight[]}>()
);



Reducer



Reducer

• Function that executes Action
• Pure function (stateless, etc.)
• Each Reducer gets each Action
• Check whether Action is relevant
• This prevents cycles



Reducer

•Reducers are responsible for handling transitions from 
one state to the next state in your application

•Using on

(currentState, action) => newState



Reducer for FlightBookingState
export const flightBookingReducer = createReducer(
    initialState,

    on(flightsLoaded, (state, action) => {
        const flights = action.flights;
        return { ...state, flights };
    })
)



Store



Store

Manages state tree

Allows to read state (via Selectors / Observables)

Allows to modify state by dispatching actions



Registering @ngrx/store 



Registering @ngrx/Store
@NgModule({
    imports: [
        […]
        StoreModule.forRoot(reducers)    
    ],
    […]
})
export class AppModule { }



Registering @ngrx/Store
@NgModule({
    imports: [
        […]
        StoreModule.forRoot(reducers),
        !environment.production ? StoreDevtoolsModule.instrument() : []
    ],
    […]
})
export class AppModule { }

@ngrx/store-devtools



ngrx and 
Feature Modules



Registering @ngrx/Store
@NgModule({
    imports: [
        […]
        StoreModule.forFeature('flightBooking', flightBookingReducer)
    ],
    […]
})
export class FlightBookingModule { }

State branch for feature



DEMO



Lab
NgRx Store



Selectors

• Selectors are pure functions used for obtaining slices of store state 
(also called state streams)

• select(tree => tree.flightBooking.flights): Observable<Flight[]>

• We can use createSelector or createFeatureSelector 

https://ngrx.io/api/store/createSelector
https://ngrx.io/api/store/createFeatureSelector


Defining selectors
export const selectFlightsWithProps =

(props: { blackList: number[] }) =>
  createSelector(selectFlights, (flights) =>

flights.filter((f) => !props.blackList.includes(f.id)));



Using selectors for manipulation (filtering)
export const selectFlightBookingState = 
createFeatureSelector<fromFlightBooking.State>

(fromFlightBooking.flightBookingFeatureKey);

export const selectFlights = 
createSelector(selectFlightBookingState, (s) => s.flights);



DEMO



Lab
NgRx Store & Selectors



Effects



Challenge

• Reducers are synchronous by definition

• What to do with asynchronous operations?



Solution: Effects

ng add @ngrx/effects

Store Asynchronous 
Operation (=Effect)

LoadAction
{from, to}

LoadedAction
{flights}

LoadAction
{from, to}





Effects are Observables

LoadAction Async 
Operation LoadedAction



Implementing Effects
@Injectable()
export class FlightBookingEffects {

    […]

}



Implementing Effects
@Injectable()
export class FlightBookingEffects {

  constructor(
    private flightService: FlightService, private actions$: Actions) {
  }

  […]

}



Implementing Effects
@Injectable()
export class FlightBookingEffects {

  constructor(
    private flightService: FlightService, private actions$: Actions) {
  }

  myEffect$ = createEffect(() => this.actions$.pipe(
                 ofType(loadFlights));
}



Implementing Effects
@Injectable()
export class FlightBookingEffects {

  constructor(
    private flightService: FlightService, private actions$: Actions) {
  }

  myEffect$ = createEffect(() => this.actions$.pipe(
                 ofType(loadFlights),
                 switchMap(a => this.flightService.find(a.from, a.to, a.urgent)));
}



Implementing Effects
@Injectable()
export class FlightBookingEffects {

  constructor(
    private flightService: FlightService, private actions$: Actions) {
  }

  myEffect$ = createEffect(() => this.actions$.pipe(
                 ofType(loadFlights),
                 switchMap(a => this.flightService.find(a.from, a.to, a.urgent)),
                 map(flights => flightsLoaded({flights})));

}



Implementing Effects
@NgModule({
  imports: [
    StoreModule.provideStore(appReducer, initialAppState),
    EffectsModule.forRoot([SharedEffects]),
    StoreDevtoolsModule.instrument()
  ],
  [...]
})
export class AppModule { }



Implementing Effects
@NgModule({
  imports: [
    […]
    EffectsModule.forFeature([FlightBookingEffects])
  ],
  [...]
})
export class FeatureModule {
}



DEMO



Lab
NgRx Effects



@ngrx/entity and @ngrx/schematics

• ng add @ngrx/entity
• ng add @ngrx/schematics 
• ng g module passengers
• ng g entity Passenger --module passengers.module.ts 



DEMO



@ngrx/store-devtools

• Add Chrome / Firefox extension to use Store Devtools
• Works with Redux & NgRx
• https://ngrx.io/guide/store-devtools

https://ngrx.io/guide/store-devtools


DEMO



Smart vs. Dumb 
Components



Thought experiment

• What if <flight-card> would directly talk with the store?
• Querying specific parts of the state
• Triggering effects

• Traceability?
• Performance? 
• Reuse?



Smart vs. Dumb Components

Smart 
Component

• Drives the "Use 
Case"

• Usually a  
"Container"

Dumb

• Independent of 
Use Case

• Reusable
• Usually a "Leaf"



Like this topic?

•Check out the NgRx Guide

• https://ngrx.io/guide/store and

•  https://ngrx.io/guide/data/architecture-overview

https://ngrx.io/guide/store
https://ngrx.io/guide/data/architecture-overview
https://ngrx.io/guide/data/architecture-overview
https://ngrx.io/guide/data/architecture-overview
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