
State Management
with Redux und @ngrx/store

Manfred Steyer

ANGULARarchitects.io

 ManfredSteyer ManfredSteyer

Contents

•Motivation
• State
• Actions
• Reducer
• Store
• Selectors
• Effects
• Labs / Demos

Motivation

App

Home Booking Boarding

App

Home Booking Boarding

FlightService PassengerService BoardingService

App

Home Booking Boarding

FlightService PassengerService BoardingService

Redux

• Redux makes complex UI manageable
• Origin: React Ecosystem

• Implementation used here: @ngrx/store
• Alternative: @ngxs/store
• Or: @dataroma/akita

ng add @ngrx/store

Alternatives

App

Home Booking Boarding

Store

State

… boarding

statistics bookings

Boarding
Reducer

State State StateAction Action Action

Action

…
Reducer

Action

Single Immutable State Tree

…

Publish/Subscribe

via Observables

State

State
export interface FlightBookingState {
 flights: Flight[];
 statistics: FlightStatistics;
 basket: object;
}

State
export interface FlightBookingState {
 flights: Flight[];
 statistics: FlightStatistics;
}

export interface FlightStatistics {
 countDelayed: number;
 countInTime: number;
}

AppState
export interface AppState {
 flightBooking: FlightBookingState;
 currentUser: UserState;
}

Actions

Actions

• Actions express events that happen throughout your application

• dispatch(flightsLoaded({ flights }))

Parts of an Action

Type
Payload

Defining an Action
export const flightsLoaded = createAction(
 '[FlightBooking] FlightsLoaded',
 props<{flights: Flight[]}>()
);

Reducer

Reducer

• Function that executes Action
• Pure function (stateless, etc.)
• Each Reducer gets each Action
• Check whether Action is relevant
• This prevents cycles

Reducer

•Reducers are responsible for handling transitions from
one state to the next state in your application

•Using on

(currentState, action) => newState

Reducer for FlightBookingState
export const flightBookingReducer = createReducer(
 initialState,

 on(flightsLoaded, (state, action) => {
 const flights = action.flights;
 return { ...state, flights };
 })
)

Store

Store

Manages state tree

Allows to read state (via Selectors / Observables)

Allows to modify state by dispatching actions

Registering @ngrx/store

Registering @ngrx/Store
@NgModule({
 imports: [
 […]
 StoreModule.forRoot(reducers)
],
 […]
})
export class AppModule { }

Registering @ngrx/Store
@NgModule({
 imports: [
 […]
 StoreModule.forRoot(reducers),
 !environment.production ? StoreDevtoolsModule.instrument() : []
],
 […]
})
export class AppModule { }

@ngrx/store-devtools

ngrx and
Feature Modules

Registering @ngrx/Store
@NgModule({
 imports: [
 […]
 StoreModule.forFeature('flightBooking', flightBookingReducer)
],
 […]
})
export class FlightBookingModule { }

State branch for feature

DEMO

Lab
NgRx Store

Selectors

• Selectors are pure functions used for obtaining slices of store state
(also called state streams)

• select(tree => tree.flightBooking.flights): Observable<Flight[]>

• We can use createSelector or createFeatureSelector

https://ngrx.io/api/store/createSelector
https://ngrx.io/api/store/createFeatureSelector

Defining selectors
export const selectFlightsWithProps =

(props: { blackList: number[] }) =>
 createSelector(selectFlights, (flights) =>

flights.filter((f) => !props.blackList.includes(f.id)));

Using selectors for manipulation (filtering)
export const selectFlightBookingState =
createFeatureSelector<fromFlightBooking.State>

(fromFlightBooking.flightBookingFeatureKey);

export const selectFlights =
createSelector(selectFlightBookingState, (s) => s.flights);

DEMO

Lab
NgRx Store & Selectors

Effects

Challenge

• Reducers are synchronous by definition

• What to do with asynchronous operations?

Solution: Effects

ng add @ngrx/effects

Store Asynchronous
Operation (=Effect)

LoadAction
{from, to}

LoadedAction
{flights}

LoadAction
{from, to}

Effects are Observables

LoadAction Async
Operation LoadedAction

Implementing Effects
@Injectable()
export class FlightBookingEffects {

 […]

}

Implementing Effects
@Injectable()
export class FlightBookingEffects {

 constructor(
 private flightService: FlightService, private actions$: Actions) {
 }

 […]

}

Implementing Effects
@Injectable()
export class FlightBookingEffects {

 constructor(
 private flightService: FlightService, private actions$: Actions) {
 }

 myEffect$ = createEffect(() => this.actions$.pipe(
 ofType(loadFlights));
}

Implementing Effects
@Injectable()
export class FlightBookingEffects {

 constructor(
 private flightService: FlightService, private actions$: Actions) {
 }

 myEffect$ = createEffect(() => this.actions$.pipe(
 ofType(loadFlights),
 switchMap(a => this.flightService.find(a.from, a.to, a.urgent)));
}

Implementing Effects
@Injectable()
export class FlightBookingEffects {

 constructor(
 private flightService: FlightService, private actions$: Actions) {
 }

 myEffect$ = createEffect(() => this.actions$.pipe(
 ofType(loadFlights),
 switchMap(a => this.flightService.find(a.from, a.to, a.urgent)),
 map(flights => flightsLoaded({flights})));

}

Implementing Effects
@NgModule({
 imports: [
 StoreModule.provideStore(appReducer, initialAppState),
 EffectsModule.forRoot([SharedEffects]),
 StoreDevtoolsModule.instrument()
],
 [...]
})
export class AppModule { }

Implementing Effects
@NgModule({
 imports: [
 […]
 EffectsModule.forFeature([FlightBookingEffects])
],
 [...]
})
export class FeatureModule {
}

DEMO

Lab
NgRx Effects

@ngrx/entity and @ngrx/schematics

• ng add @ngrx/entity
• ng add @ngrx/schematics
• ng g module passengers
• ng g entity Passenger --module passengers.module.ts

DEMO

@ngrx/store-devtools

• Add Chrome / Firefox extension to use Store Devtools
• Works with Redux & NgRx
• https://ngrx.io/guide/store-devtools

https://ngrx.io/guide/store-devtools

DEMO

Smart vs. Dumb
Components

Thought experiment

• What if <flight-card> would directly talk with the store?
• Querying specific parts of the state
• Triggering effects

• Traceability?
• Performance?
• Reuse?

Smart vs. Dumb Components

Smart
Component

• Drives the "Use
Case"

• Usually a
"Container"

Dumb

• Independent of
Use Case

• Reusable
• Usually a "Leaf"

Like this topic?

•Check out the NgRx Guide

• https://ngrx.io/guide/store and

• https://ngrx.io/guide/data/architecture-overview

https://ngrx.io/guide/store
https://ngrx.io/guide/data/architecture-overview
https://ngrx.io/guide/data/architecture-overview
https://ngrx.io/guide/data/architecture-overview

	State Management with Redux und @ngrx/store
	Contents
	Motivation
	Folie 4
	Folie 5
	Folie 6
	Redux
	Alternatives
	Folie 12
	Folie 14
	State
	State (2)
	State (3)
	AppState
	Actions
	Actions (2)
	Parts of an Action
	Defining an Action
	Reducer
	Reducer (2)
	Reducer (3)
	Reducer for FlightBookingState
	Store
	Store (2)
	Registering @ngrx/store
	Registering @ngrx/Store
	Registering @ngrx/Store (2)
	ngrx and Feature Modules
	Registering @ngrx/Store (4)
	DEMO
	Lab
	Selectors
	Defining selectors
	Using selectors for manipulation (filtering)
	DEMO (2)
	Lab (2)
	Effects
	Challenge
	Solution: Effects
	Folie 46
	Effects are Observables
	Implementing Effects
	Implementing Effects (2)
	Implementing Effects (3)
	Implementing Effects (4)
	Implementing Effects (5)
	Implementing Effects (6)
	Implementing Effects (7)
	DEMO (3)
	Lab (3)
	@ngrx/entity and @ngrx/schematics
	DEMO (4)
	@ngrx/store-devtools
	DEMO (5)
	Smart vs. Dumb Components
	Thought experiment
	Smart vs. Dumb Components (2)
	Like this topic?

